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Abstract

We consider a symmetric boundary integral formulation associated with a mixed bound-
ary value problem defined on a domain Q E ]R2 with piecewise smooth boundary r.
We assume that T is mapped onto itself by a finite group g of congruences having at
least two distinct elements. Hence, we can decompose the related symmetric Galerkin
BEM problem into independent subproblems of reduced dimension with respect to the
complete one. Shape functions for each subproblem can be obtained from classical BEM
basis, ordered as a vector, applying suitable restriction matrices constructed starting
from group representation theory.

1 Introduction
Let Q C R2 , be a bounded domain with a piecewise smooth boundary F. The boundary
r is partitioned into two non intersecting open subset IF and r2, with F = F1 UF 2 =

UjT=1 r, r3 being an open strainght line segments. In the following we always assume
meas Fr > 0. The solution of the mixed boundary value problem

L(x) u(x) = 0 in Q, (1.1)
Ou

u ) = u*(x) on F1 , q(x) := -n = q*(x) on F2, (1.2)

can be expressed by the representation formula

u(x) = jU(x,y)q(y)dY- j 9 -U(x, y)u(y)dy, x C Q. (1.3)

In (1.1) L(.) is an elliptic partial differential operator of second order, U(x, y) its fun-
damental solution (see [4] for a general discussion). In (1.2) 2-` denotes the derivative
with respect to the outher normal n to F, and u* and q* are given functions. Applica-
tions of (1.1)-(1.2) are, for instance, boundary value problems in potential theory and
in elastostatic. From (1.3) it is clear that if we want to recover u in Q we have firstly to
know the remaining Cauchy data, since in (1.2) these functions are given only partially.
Taking the limit of u(x) for x E Fa and the normal derivative a" (x) for x E F2 in this
formula and using the jump relations, one finds the system [2]

j U(x,y)q(y)dy - a U(x,y)u(y)dy= fi(x), x CE 1,
Jr2 On 7
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U(x, y)q(y) dy+ 2 anOnU(xy)u(y)dy =f 2(x), x E F2. (1.4)

In order to perform the Galerkin method, we need a family of finite-dimensional sub-
spaces {Uh,p(F)} defined on P. Let us define a mesh F• for each FJ: i Ux 1 hiN

h ki=1 rh,i

such that Fr is an open segment. We define for p Ž 0, h > 0, Uh,p(F1) to be the set
of functions on F, whose restrictions to r7 C r, belong to the set of all polynomials of
degree Moreover, for p r U,•(F 2) will denote those continuous functionsdere < . Moener foh,•"1,

on r2 whose restrictions to F7i C 12 belong to C0 (r2) and which vanish at the end points
of r72. The approximating boundary element shape functions of degree p > 0 are defined
through the standard assembling of the local basis functions defined on each Fr, . We
then define

Uh,p(F) := span {(pi, 0j) : ýi E U,,p(F 2 ), 0i E Uh,p(T1)}. (1.5)

The corresponding symmetric Galerkin boundary elements scheme for (1.4) leads to a
linear system of the form

A. = b. (1.6)

If the boundary r presents symmetry properties, we will exploit them to reduce the
computational cost of the solution of (1.6), using a decomposition result for the Galerkin
boundary element problem that we will introduce at the end of the next section.

2 Matrix representation of a finite group of congruences and

projection operators

Let g be a finite group of t congruences (t > 2) of the Euclidean space ]Rm (m = 2, 3).
The group g can be described by orthogonal matrices -yi of order m. Let {1y,..., yt} be
the elements of 0, -y, the identity matrix. From the theory of group representation [5] it
follows that any finite group 9 admits a finite number q of unitary irreducible, pairwise
inequivalent matrix representations

Let df be the order of the representation {w(e)(-i)}, i.e., the order of the matrices
w(V)(i). The number q of the representations (2.1) and the orders dl,..., dq only de-
pend on 9. Any representation {w(e)(Vi)} of order di _> 2, can be replaced, in the
system (2.1), by an equivalent unitary representation. Representations of order 1 are
univocally determined. We observe that, if -y and yj are two elements of g, then
w(e (-y-y) = w(•) (Vi)w(e ('), w(') (-K.) = [wC) (7-y)]*, where [w(e) (-i)]* denote the trans-
pose of the matrix w(') ('yi). Always from the theory of group representation it follows
that q < t and the relation d2 + d 2 +"• + d' = t holds. Furthermore, q = t if and only
if dl = d2... dq = 1. Having set M = di + d2 + + dq, then q•_ M < t, and we
have q = M = t if and only if 9 is an abelian group.

Let Q be a bounded domain in R2 with a piecewise smooth boundary r, invariant
with respect to 0, i.e., sent onto itself by the congruences of 0. Also the boundary r is
invariant with respect to 0, i.e., for any -y E 0 and x E r, (-yx) E F.
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Let W(F) be the real vector space of real functions defined on F. We can associate
to any element -yi of 0 a linear transformation Ti defined, for any v E W(F), by

(Tiv)(x) := v('ý•-x) x E F, (2.2)

where Ti is a linear, invertible transformation from W(F) onto W(F), and T1 is the
identity.

Definition 2.1 A subset V(F) of W(F) is said to be invariant with respect to 9 (or
0-invariant) if for any v E V(F) and any 7i E 9, Tiv E V(F).

Obviously if v is a function of W(F), not identically equal to zero, the set of functions
{Tiv, i = 1,..., t} is invariant with respect to 9.

Definition 2.2 Let L be a linear operator in V(F). We will say that 1 is invariant with
respect to 9 if for anyu E V(F): Tiu = Tiu, i = 1,...,t.

Example 2.3 Let V(F) be a suitable Sobolev space and (12f)(x) :=fr K(x, y)f(y)dF,
an integral operator defined on V(F), with kernel IC(x, y).

We have: Ti(£f)(x) = fJrK(y-x, y)f(y)dFy; since 'yi E 9 is an isometry, the mapping
y --* -'iy preserves the differential element dF.. Thus

£(Tif)(x) = jr KC(x'y)f('y 1-'y)dFy = j x ^(xi y)f(y)dr .

Then the integral operator C is Q-invariant if the kernel IC(x, y) satisfies the condition
KC(x, y) = IC(-ix, -yiy) for all x, y E IF, i = 1,.,t.

Starting from the group 9, the system of representation (2.1) and the linear trans-
formations Ti defined by (2.2), we can introduce M linear transformations of W(F),

Pek= Zwjt (-yi)Ti (= 1,...,q; k =1,...,de). (2.3)

Owing to the property of the representations (2.1), there holds

q di

Ptk = Ptk, PikP'k = 0 if (f, k) i (f', k'), ZE Ptk = T1. (2.4)
1=1 k=1

The linear transformations Pek, which will be called projection operators, determine a
decomposition of any vector space V(F) C wV(F) invariant with respect to 9, into a
direct sum of M subspaces Vfk(r); Vfk(F) is the co-domain of Pek, viewed as a linear
transformation from V(P) onto itself.

If g is a non-abelian group, it is useful to consider in the space W(F) further linear
transformations linked to the system (2.1). Let {w(V)(-yi)} be a representation of 9 of
order dt > 2. Let us consider d. linear transformations, already introduced in [1], defined
as follows

A(R) ZW?()'Yi)Ti, k, r=1 .de (2.5)
kr k
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If k = r, then A(,) = Pek.

Definition 2.4 Let B(.,.) be a bilinear form from V(F) x V(F) on R. We will say that
B(., .) is g-invariant if for, any u, v E v(F),

B(Tiu, Tiv) = B(u, v), i= 1..., t. (2.6)

Let V(P) be a Hilbert space and let us consider the following problem

find u E V(F) : B(u, v) = .F(v) for all v E V(P), (2.7)

where B(-, .) is continuous and coercive, and F(-) : V(P) -- R a linear continuous
functional. If F and V(F) are invariant with respect to g, and V(F) = (@=1 ED d' Vik(F)
is the decomposition of V(F) defined by the projection operators (2.3) the following
fundamental result holds.
Theorem 2.5 If B(., .) verifies the condition (2.6) and Pik are the projection operators
defined in (2.3), then the problem (2.7) can be decomposed into M independent problems;
find uek E V•k(F) such that

B(ufk, V•k) = .F(Vek) for all Vik E Vfk(F), • = 1,..., q; k 1,..., de. (2.8)

The solution of (2.7) can be recovered as u = EQD= d Uf= Gk'=l Ufk"

The above result can be applied, under the invariance hypothesis, in the discrete form
to the symmetric Galerkin BEM scheme if we choose the finite dimensional subspace
Uh,p(F) defined in (1.5), to be g-invariant too, and therefore decomposable as Uh,p(P) =

= k h,p(F). Then the symmetric Galerkin boundary element problem can be
decomposed into M independent problems which have reduced dimension with respect
to the original one and which can be solved on parallel processors. Now one has to
construct boundary element basis functions for each subspace Uhtk (F). With some simple
geometries (and groups of congruences) this can be done directly, but in many cases this
is a difficult task. We solve it here by applying restriction matrices, which we introduce
in the next sections, to the basis of Uh,p(F), ordered as a vector. Since there is a ono-
to-one correspondence between the standard boundary element shape functions and the
nodes of the mesh fixed on F, in the following we will work directly on the nodes of the
boundary.

3 Elementary restriction matrices
In this section we introduce suitable matrices depending only on the group g and on the
system of representations (2.1), whichlwill be called elementary restriction matrices. In
the following sections we will see how, starting from these, we can construct restriction
matrices relative to a mesh defined on F. We fix a finite group =_ {1y,.-., yt} of
congruences of IR' and a system (2.1) of orthogonal irreducible, pairwise inequivalent
representations of 0. 0 always admits the representation {1, 1,..., 1} which we indicate
by {w(1) (-y)}; let us order the remaining representations (2.1) with increasing order dt;
let {w(1)(•yi)}. {w(8)(')} be the representations of order 1. If 0 is an abelian group
one has s = q = t and d, = d2  ... = dt = 1. If g is a nonabelian group, it holds
s<q<tandthereforedl--d 2 ... d =1, 2 < d,+1 -. dq.
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Let g be an abelian group. We will call elementary restriction matrices the following
t matrices, with 1 row and t columns

Rf = 1 W(O ('Y).. V)()1,..., t. (3.1)

Since representations {W(e)(Ti)} are real, it follows that w(±)1y) = :1, for f, i = 1,..., t.

Let g be a nonabelian group. Correspondingly to the representations {a(e)(Yh)} of
order 1 of the system (2.1), we introduce matrices Rei with 1 row and t columns

Rf1= P( Yl).= 1,..., s. (3.2)

We obtain, in this case, s matrices. Let now {w(f)(yi)} be a representation of the system
(2.1) of order de, with de > 2. With k = 1,..., de fixed, let us consider the following
matrix, with de rows and t columns

W V)~ (e) , 0 7
Rek = e 2k 7 1) 2k (12) ... W(k (3.3)

: ... k

Due to the orthogonality properties of the representation{w(e) (-yi)}, matrix Rek has pair-
wise orthonormal rows. Therefore the rank of matrix Rek is de. For any representation
{w()(7y)} we obtain de matrices Rek (k = 1,..., de). Matrices Rek (V = 1,..., q; k =
1...., de) defined in (3.2) and (3.3) will be called elementary restriction matrices. The
total number of these matrices is M, with M = d, + d2 +..- + dq. The matrices defined in
(3.1) or (3.2)-(3.3) satisfy some properties, easily deducible from orthogonality relations
(2.4) and which we summarise in the following.

Theorem 3.1 ([1]) The M elementary restriction matrices defined by (3.1) or (3.2)-
(3.3) verify the relations

q dt

RekR* = Id, RekRj*IA, = 0 if (t, k) 5 (f', k'), •3 RARek = I (3.4)
t=1 k=1

where Ide, I are identity matrices of order de and t respectively.

4 7-(Ea) spaces and elementary restriction matrices

Let F be the piecewise smooth boundary of Q, invariant with respect to 9, and a E F.
Consider the ordered set

Ea f a,,y;la ..... ,"t la}, (4.1)

and the space 7-H(E) of real functions defined in Ea. A natural basis B in -(Ea) is
formed by functions having value 1 in a point of Ea and 0 in the remaining points.
Having indicated with X the function of B with value 1 in the point a, we obtain the



Geometrical symmetry 83

ordered basis B {X(x), X(y2x),..., X(ltx)}, such that, of course,

-(Ea) = span{X(X), X(y2x),.., X('YtX)}. (4.2)

7-h(Ea) is a vector space with finite dimension n < t, invariant with respect to g (since
Ea is invariant with respect to g) and therefore decomposable into direct sum of M
subspaces 7-tk(Ea). Having set ne = dimHTek(Ea), we have n = 1 dene.

Definition 4.1 We say that a is a generic point of F (with respect to the group 9) if
dim-t(Ea) = t or, equivalently, if all the elements of E, are distinct.

The following results hold.

Theorem 4.2 ([1]) Having fixed any point a E F, if {w(i)Q,)} is a representation of
order 1, then 7-ei(Ea) = span{Peix} and ne _ 1. If {w(e)(y)} is a representation of
order de > 2, one has

7-tk(Ea) = span{A)X,..., A(t) X k 1 t, (4.3)

and therefore ne < de. If a is a generic point, then ne = de for any f.

Let now Vt be the column vector (X(x), X(y2x),... , X(-ytx))*, whose order is related to
that one fixed for the elements of g. Corresponding to the representations of order 1 of g,

for the elementary restriction matrices defined in (3.1), (3.2) we have RV' = VrtPRiX.
From Theorem 4.2, it follows that

'el(-a) = span{Rel t }. (4.4)

Corresponding to the representations of order de >_ 2, for the elementary restriction

matrices defined in (3.3) we have RekV t 
= t/d(A )X, A X,..., A'X ) . From

(4.3), it follows that
7Hek(Ea) = span{RekV t }. (4.5)

In both cases, if a is a generic point, the components of the vector RekV t constitute a
basis in (tk(E(a). Therefore, for any generic point a, the elementary restriction matrix
Rek represents the projection operator Ptk from -H(Ea) onto 1Hk(Ea), if we choose Vt
as a basis in N-(Ea).

Now, we want to construct elementary restriction matrices Rek which represent the
projection operators Ptk from 7H(E(a) onto Rtik(Ea) for nongeneric points. Therefore let
us suppose a to be a nongeneric point, i.e., such that the functions

X(X), X(-2x),..., X(Ytx) (4.6)

are linearly dependent. Let n be the maximum number of linearly independent functions
among (4.6) and let the following functions be linearly independent,

xby x),...,xby X). (4.7)

It is convenient to order the functions (4.7) with increasing index i,; therefore let us
suppose il < i2 < ... < in. In this case elementary restriction matrices Rek will have n

columns. The number ne of rows (ne _• de) of each Rek is not determined by il, i2, --, in.
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In general, we only can say that matrices Rel,.... Red, have the same number ne of rows,
where nt = dim 'Hek (Ea).

Then we now consider a significant class of nongeneric points. Having fixed t (f -
2,..., t), let Ie(F) be the set of all points a E F such that

a = ya. (4.8)

From (4.8) it follows, for any i : X('yix) = X(yityix). This implies that the functions (4.6)
are naturally subdivided into subsets and any subset contains coincident functions. Then
we can obtain elementary restriction matrices for the space -/t(E) with a c It(F) starting
from elementary restriction matrices built in Section 3, with the following procedure,

* Let us sum to each column of index i, (a - 1,..., n) all the columns of index j,
with j such that a = 1a. We indicate with Rke the obtained matrices, all
with dt rows and n columns, but not all full-rank matrices; some of these may be
zero matrices.

* Let us extract from nonzero matrices Retk submatrices Rek made up of nt linearly
independent rows.

e Finally, let us construct from Rek matrices Rek with a row-orthonormalization pro-
cedure.

The (nonzero) matrices Rek verify the properties expressed by Theorem 3.1. Further-
more, matrices Rtk, applied to the vector V = (X(yix), ... X(-y/ix))* corresponding
to a point a E Ie(F), give vectors whose components constitute a basis for ?-Hk(Ea).

For this reason they represent the projection operators from 7-(tE) onto Rek(Ea), for
any a E It(F). Then we will say that the matrices Rek, with nt rows and n columns,
are elementary restriction matrices for the space H(EDa) relative to points a E Ie(F).
Furthermore n -= E'=1 den.

5 7-H(E) spaces and restriction matrices

Let r be the piecewise smooth boundary of Q, E a set formed by N points of F consti-
tuting a not necessarily uniform mesh defined on F. Let us suppose r and E invariant
with respect to g. Let 7-R(E) be the vector space of real functions defined in E. 7-H(E) is
a N-dimensional vector space, invariant with respect to g; this is due to the fact that E
is invariant with respect to g. A natural basis B in W(E), invariant with respect to g,
is formed by functions having value 1 in a point of E and 0 in the remaining points. In
order to more easily construct restriction matrices for the space 7-H(E), or equivalently
for the mesh E, it is suitable to introduce in the set E the following equivalence relation.

Definition 5.1 We say that a point a' is equivalent to a" if there exists an element
"Yi E 9 such that a" =_y-y7la' (and therefore a' =- ia").

The points of the set E are then subdivided into r equivalence classes. If r = 1 one
has 'H(E) = 7-(tEa), with a - E. Then let us suppose r > 2. We order the points of the
set E as follows; having indicated with a, ... , a. r r pairwise inequivalent points of E, we
consider the following ordered points

a -, y)'1al,... ,1^(;-aa2, /11a2,... (T-1a2 . ,ar,"f21ar ....-1 -1-lar- (5.1)
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If points (5.1) are distinct, we have N = rt. If some points among (5.1) coincide, we will
erase from the sequence (5.1) a point if it is equal to a previous one. Then a sequence
of N points, with N < rt, will remain, with n(1) points equivalent to a,, n(2) equivalent
to a2 ,..., n(r) equivalent to a,. In both cases 7-H(E) = 7H(Ea,) G ®'(Ea 2 ) E)" . -H(Ea ),
with dim R(Eaj) = n(S) < t, j = 1,...,r and N = n(l) + n(2) + + n(r). We indicate

by C(j) the elementary restriction matrices relative to the space 7i(Eaj), constructed as

indicated in Section 4. Let nj) be the number of rows of the matrix C(j) having fixed j,

the number of columns of matrices C(j) for any f and k, is n(i) We consider therefore
the following M block matrices

C(1) 0 0 ... 0fk
0 ( (2 ). .

REk= 0 00ik (5.2)

0 0 0 --- r(40)

with n= (1) + (2) . .+n () rows and N columns, from which we have to eliminate the-
possible zero rows. Matrices Rik determined by this procedure, which we call restriction
matrices for the space R(E) of dimension N, have rank equal to the number Nj of the
remained rows and for these matrices properties expressed in Theorem 3.1 still hold. In
both cases, we have the following theorem.

Theorem 5.2 Considering the basis B in 7-R(E) as a column vector VN with the or-
der deduced from (5.1), the components of the vector RekVN form a basis in 7-Lk(E).
Therefore the M matrices Rik, having fixed in H-l(E) the ordered basis VN, determine a
decomposition of 'H(E) in M subspaces, which coincides with the one obtained with the
projection operators Pik.

Preliminary numerical results appear promising; algorithms for potential and linear
elasticity problems are being implemented on parallel processors to analyse the efficiency
of the proposed approach.
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